ANXIOLYTICS AND HYPNOTICS

Dr Ruwan Parakramawansha MBBS, MD, MRCP(UK), MRCPE, DMT(UK) (2013/04/02)

LEARNING OUTCOMES

By the end of the lecture, students will be able to...

- define i. an anxiolytic ii. a hypnotic
- list different classes of commonly used anxiolytic/hypnotic drugs with examples
- describe the mechanism of action, pharmacological effects, pharmacokinetics, adverse effects and important drug interactions of anxiolytics/hypnotics.
- explain the clinical significance of pharmacokinetics of benzodiazepines
- describe the problems encountered with the continued use of hypnotics and the measures that can be taken to minimize them.

OUTLINE....

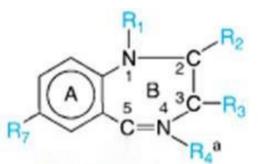
- A. Definitions
- B. Types of anxiolytics/hypnotics
- c. Benzodiazepines
 - pharmacodynamics
 - Pharmacokinetics
 - ADRs
- D. "Z" compounds & Buspirone

DEFINITIONS...

- Anxiolytic a drug which reduces anxiety and causes calm and quietness in the patient
- Sedative a drug that decreases activity and calms the recipient
- Hypnotic a drug that produces drowsiness and facilitates the onset and maintenance of a state of sleep that resembles natural sleep

DEFINITIONS...

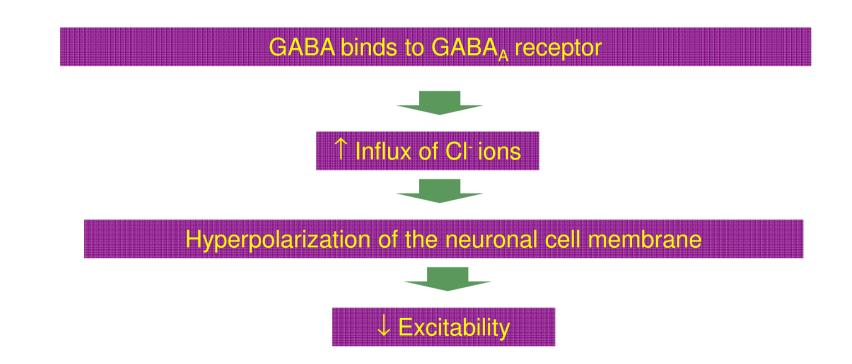
- Anxiety \rightarrow Drowsiness \rightarrow Sleep \rightarrow Anaesthesia \rightarrow Coma \rightarrow Death
- The difference between sedatives and hypnotic is usually the dose:
 - Lower dose calming effect
 - Higher dose cause sleep
- Some newer medicines have separated the effects e.g. Buspirone- an anxiolytic without sedation

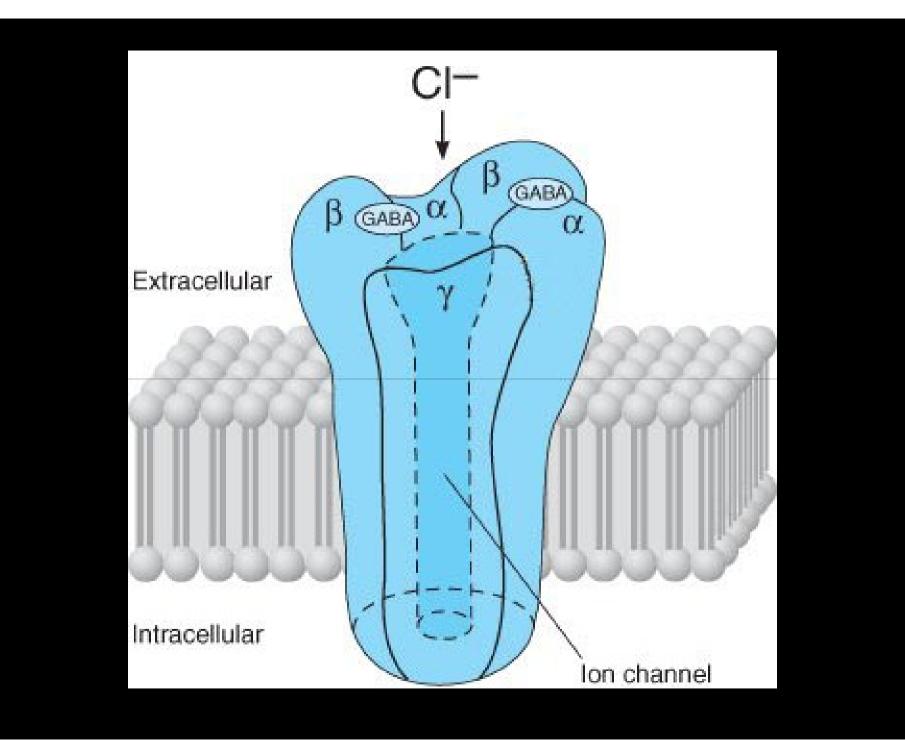

ANXIETY

- Anxiety is a normal adaptive response
- anxiety is a disorder if:
 - chronic
 - disproportionate to the situation
 - occurs without an identifiable stimulus
 - interferes with a person's concentration and ability to do routine tasks

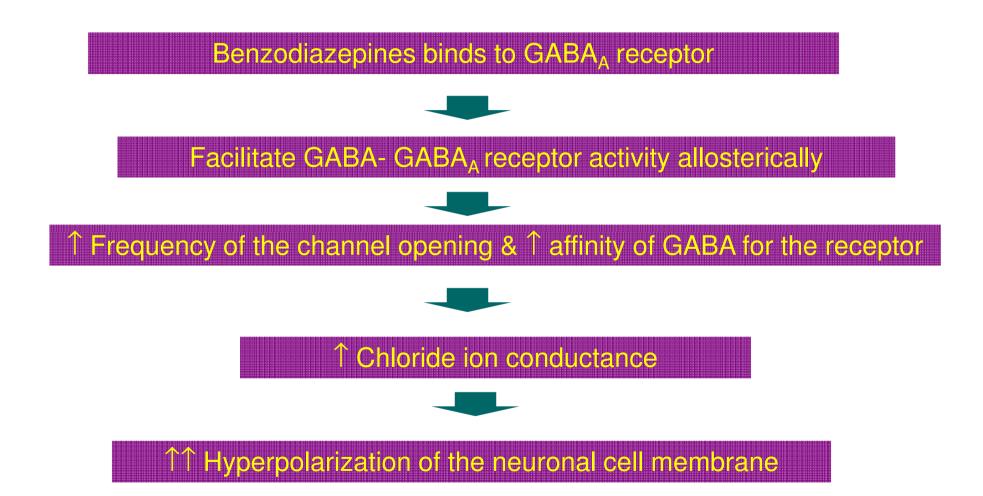
ANXIOLYTICS/SEDATIVES/HYPNOTICS

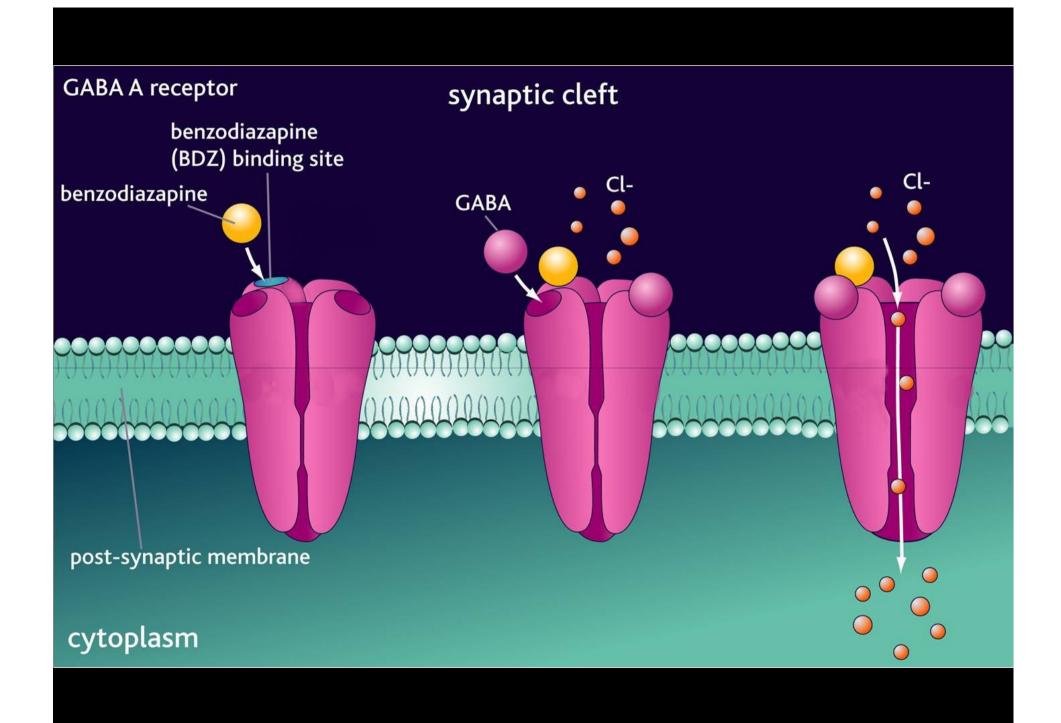
- 1. Benzodiazepines
- 2. "Z"componds e.g. Zolpidem
- 3. Barbiturates e.g. Phenobarbital
- 4. Chloral Hydrate
- 5. Buspirone
- 6. Melatonin Congeners e.g. Ramelteon


BENZODIAZEPINES



- The term *benzodiazepine* refers to the portion of the structure composed of a benzene ring (A) fused to a seven-membered diazepine ring (B).
- Approved for use ~ 50 years ago
 - Chlodiazepoxide 1960
 - Diazepam 1961


MODE OF ACTION


- γ Aminobutyric acid (GABA) the predominant inhibitory neurotransmitter in CNS.
- GABA_A receptor is a ligand-gated ion channel

MODE OF ACTION

PHARMACOLOGICAL EFFECTS

- 1. Reduction of anxiety and aggression
- 2. Induction of sleep
- 3. Anterograde amnesia
- 4. Anticonvulsant effect
- 5. Reduction of muscle tone and coordination
- 6. Effects on respiration
- 7. Effects on CVS

Reduction of anxiety and aggression

- All benzodiazepines show anxiolytic effects
- Can cause paradoxical hyperexcitability range from talkativeness and excitement, to aggressive and antisocial acts

Induction of Sleep

- Reduce sleep latency, increase sleep time, reduce the number of awakenings after sleep onset, and improve overall sleep quality
- Alter sleep architecture
 - Reduce rapid eye movement (REM)sleep (.:.increase REM sleep after withdrawal)

Anterograde Amnesia

 Minor surgical or invasive procedures can be performed without leaving unpleasant memories

Anticonvulsant Effect

- All the benzodiazepines have shown anticonvulsant activity in animal tests
- Clonazepam used as an antiepileptic and diazepam in acute seizures

Effect on Muscle Tone

 Benzodiazepines reduce muscle tone by a central action on GABA_A receptors primarily in the spinal cord

Effect on CVS

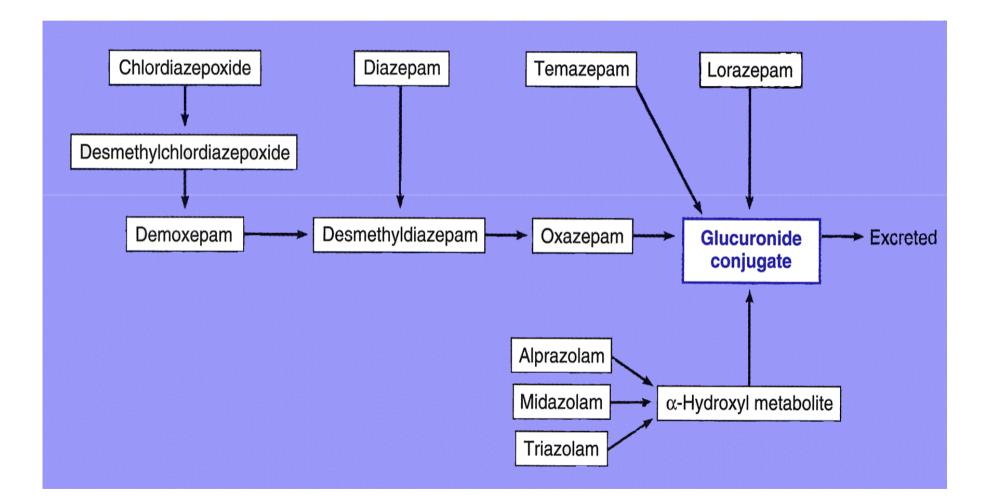
- In preanesthetic doses, all benzodiazepines decrease blood pressure and increase heart rate
- Midazolam via reduced peripheral resistance
- Diazepam via negative inotropic effect

Effect on Respiration

- Can decrease hypoxic respiratory drive and cause respiratory acidosis
- Can only affect respiration in children and individuals with impaired hepatic function, such as alcoholics
- Usually need respiratory support in toxicity if taken with another CNS depressant e.g. alcohol

TOLERANCE

- Tolerance (i.e. a gradual escalation of dose needed to produce the required effect) occurs with all benzodiazepines
- Tolerance occurs to hypnotic effect after 1-2 days of use
- Also seen with muscle relaxant and anticonvulsant effects


PHARMACOKINETICS

- Well absorbed after oral administration
- Bind strongly to plasma proteins
- Metabolized extensively by hepatic CYPs
- Metabolised and eventually excreted as glucuronide conjugates in the urine, several converted to active metabolites

PHARMACOKINETICS

- Vary greatly in duration of action
- Short-acting compounds better hypnotics with reduced hangover effect on wakening
- Long-acting compounds -better anxiolytics and anticonvulsant drugs

BIOTRANSFORMATION

Drug	Peak Blood Level (Hours)	Elimination Half-Life ¹ (Hours)	Comments
Alprazolam	1-2	12-15	Rapid Oral Absorption
Chlordiazepoxide	2-4	15-40	Active metabolites; erratic bioavailability from IM injection
Diazepam	1-2	20-80	Active metabolites; erratic bioavailability from IM injection
Lorazepam	1-6	10-20	No active metabolites
Temazepam	2-3	10-40	Slow oral absorption; no active metabolites
Triazolam	1	2-3	Rapid onset; short duration of action
Oxazepam	2-4	10-20	No active metabolites

¹ Includes half-lives of major metabolites

ADVERSE EFFECTS

- Sedation \rightarrow Hangover effect
- Ataxia(impaired coordination) affect ability to drive or operate machinery
- Anterograde amnesia
- Confusion
- Muscle weakness

DEPENDANCE

- Psychological and physical
- Psychological dependence refers to drug craving that can lead to drug-seeking behaviour
- Physical dependence occurs when the drug is stopped and symptoms of withdrawal occur

WITHDRAWAL SYMPTOMS

- Typically mimic symptoms of anxiety disorders
 - Anxiety
 - Insomnia, Anorexia
 - Muscle twitching, Tremor, perspiration
 - Unsteadiness
 - Hypersensitivity to light and noise
 - Convulsions
 - Delirium tremens

"Z " COMPOUNDS

e.g. zolpidem, zopiclone

- Structurally unrelated to benzodiazepines
- Act as agonists on the benzodiazepine site of the GABA_A receptor
- Little effect on the stages of sleep
- Tolerance and physical dependence rare

BUSPIRONE

• An anxiolytic medicine

• EFFICACY:

similar to that of benzodiazepines in anxiolytic effect

• MODE OF ACTION:

Act as a partial agonist for serotonin $\rm 5\text{-}HT_{1A}$ receptors in the brain

BUSPIRONE

• ADVANTAGES:

- No physical dependence/ withdrawal
- No abuse potential
- Less sedation and psychomotor impairment
- Lack of interaction with alcohol

DISADVANTAGES:

- Slow onset of action (1-2 weeks)
- Short $t_{1/2}$ (~2.5h) \rightarrow b.d./ t.d.s. administration